<u>The Junction Diode</u> Forward Bias Equation

In **forward bias**, we have learned that the diode current i_D can be related to the diode voltage v_D using the following **approximation**:

$$i_{D} = I_{S} \left(e^{\frac{v_{D}}{nV_{T}}} - 1 \right) \approx I_{S} e^{\frac{v_{D}}{nV_{T}}}$$

provided that $v_p \gg 25 \, mV$.

We can **invert** this approximation to alternatively express v_D in terms of diode current i_D :

Now, say a voltage v_1 across some junction diode results in a current i_1 . Likewise, **different** voltage v_2 across this same diode a diode of course results in a **different** current i_2 . We can define the difference between these two voltages as $\Delta v = v_2 - v_1$, and then using the above equation can express this voltage difference as:

$$\Delta \mathbf{v} = \mathbf{v}_2 - \mathbf{v}_1$$

$$= n V_T \ln \left(\frac{i_2}{I_s}\right) - n V_T \ln \left(\frac{i_1}{I_s}\right)$$

$$= n V_T \ln \left(\frac{i_2}{I_s} \frac{I_s}{I_s}\right)$$

$$\Delta \mathbf{v} = n V_T \ln \left(\frac{i_2}{I_s} \frac{I_s}{I_s}\right)$$

Yikes! Look at what this equation says:

* The difference in the two voltages is dependent on the ratio of the two currents.

* This voltage difference is **independent** of scale current *I*.

We can likewise **invert** the above equation and express the ratio of the two currents in terms of the difference of the two voltages:

A: These expressions are often very useful! Frequently, instead of explicitly providing device parameters n and I_s , a junction diode is specified by stating n, and then a statement of the specific diode current resulting from a specific diode voltage.

For **example**, a junction diode might be specified as:

"A junction diode with n =1 pulls 2mA of current at a voltage v_D=0.6 V."

The above statement completely specifies the performance of this particular junction diode—we can now determine the current flowing through this diode for any other value of diode voltage v_D . Likewise, we can find the voltage across the diode for any other diode current value i_D .

For **example**, say we wish to find the current through the junction diode specified above when a potential difference of v_D =0.7 V is placed across it. We have **two** options for finding this current:

Option 1:

We know that n=1 and that $i_D=2mA$ when $v_D=0.6$ V. Thus, we can use this information to solve for scale current I_s :

$$I_{s} e^{\frac{V_{b}}{nV_{T}}} = i_{b}$$

$$I_{s} e^{\frac{0.6}{0.025}} = 2$$

$$I_{s} = 2e^{\frac{-0.6}{0.025}}$$

$$I_{s} = 7.55 \times 10^{-11} mA$$

Now, we use the forward-biased junction diode equation to determine the current through this device at the new voltage of $v_D=0.7$ V:

$$i_{D} = I_{S} e^{\frac{nV_{T}}{nV_{T}}}$$

= $(7.55 \times 10^{-11}) e^{\frac{0.7}{0.025}}$

=109.2 mA

Option 2

Here, we directly determine the current at $v_D = 0.7$ using one of the expressions derived earlier in **this** handout! Using $i_1 = 2$ mA, $v_1 = 0.6$, and $v_2 = 0.7$ V we can find current i_2 as:

$$\frac{i_2}{i_1} = exp\left[\frac{(v_2 - v_1)}{nV_T}\right]$$
$$i_2 = i_1 exp\left[\frac{(v_2 - v_1)}{nV_T}\right]$$
$$= 2 exp\left[\frac{(0.7 - 0.6)}{0.025}\right]$$
$$= 109.2 mA$$

Option 2 (using the equations we derived in this handout) is obviously **quicker** and **easier** (note in option 2 we did **not** have to deal with **annoying numbers** like 7.55×10^{-11} !).

Finally, we should also note that junction diodes are often specified **simply** as "a 2mA diode" or "a 10 mA diode" or "a 100 mA diode". These statement **implicitly** provide the diode current at the **standard** diode test voltage of $v_D=0.7$ V.

Q: But what about the value of junction diode idealty factor **n**?

A: If no value of n is provided (and there is not sufficient information given to determine it), we typically just assume that n = 1.

For **example**, consider the following problem:

"Determine the voltage across a **100 mA junction diode** when there is 2 mA of current flowing through it."

A "100 mA junction diode" simply means a junction diode that will have a current of 100 mA flowing through it $(i_D=100 \text{ mA})$ if the voltage across it is $v_D=0.7 \text{ V}$. We will assume that n=1, since no other information about that parameter was given.

Thus, using $v_1 = 0.7$, $i_1 = 100$ mA, and $i_2 = 2$ mA, we can determine the value of v_2 :

$$v_{2} - v_{1} = nV_{T} \ln \left(\frac{l_{2}}{l_{1}}\right)$$

$$v_{2} - 0.7 = (0.025) \ln \left(\frac{2}{100}\right)$$

$$v_{2} = 0.7 - 0.10$$

$$- 0.60 V$$

EXCELENT!