The Junction Diode

Forward Bias Equation

In forward bias, we have learned that the diode current io can be related to the diode voltage v_{0} using the following approximation:

$$
i_{D}=I_{S}\left(e^{v_{0} / n V_{T}}-1\right) \approx I_{S} e^{v_{0} / n V_{T}},
$$

provided that $v_{0} \gg 25 \mathrm{mV}$.

We can invert this approximation to alternatively express v_{D} in terms of diode current i_{D} :

$$
\begin{aligned}
I_{S} e^{\frac{v_{0}}{n V_{T}}} & =i_{0} \\
e^{\frac{v_{0}}{n V_{T}}} & =\frac{i_{D}}{I_{S}} \\
\frac{v_{0}}{n V_{T}} & =\ln \left(\frac{i_{0}}{I_{S}}\right) \\
v_{D} & =n V_{T} \ln \left(\frac{i_{0}}{I_{S}}\right)
\end{aligned}
$$

Now, say a voltage v_{1} across some junction diode results in a current i_{1}. Likewise, different voltage v_{2} across this same diode a diode of course results in a different current i2. We can define the difference between these two voltages as $\Delta v=v_{2}-v_{1}$, and then using the above equation can express this voltage difference as:

$$
\begin{aligned}
\Delta v & =V_{2}-V_{1} \\
& =n V_{T} \ln \left(\frac{i_{2}}{I_{S}}\right)-n V_{T} \ln \left(\frac{i_{1}}{I_{S}}\right) \\
& =n V_{T} \ln \left(\frac{i_{2}}{I_{S}} \frac{I_{S}}{i_{1}}\right) \\
\Delta v & =n V_{T} \ln \left(\frac{i_{2}}{i_{1}}\right)
\end{aligned}
$$

Yikes! Look at what this equation says:

* The difference in the two voltages is dependent on the ratio of the two currents.
* This voltage difference is independent of scale current I_{s}.

We can likewise invert the above equation and express the ratio of the two currents in terms of the difference of the two voltages:

$$
\begin{aligned}
n V_{T} \ln \left[\frac{i_{2}}{i_{1}}\right] & =V_{2}-v_{1} \\
\ln \left[\frac{i_{2}}{i_{1}}\right] & =\frac{\left(v_{2}-V_{1}\right)}{n V_{T}} \\
\frac{i_{2}}{i_{1}} & =\exp \left[\frac{\left(v_{2}-v_{1}\right)}{n V_{T}}\right]
\end{aligned}
$$

Again, we find that this expression is independent of scale current I_{s}.

A: These expressions are often very useful! Frequently, instead of explicitly providing device parameters n and I_{s}, a junction diode is specified by stating n, and then a statement of the specific diode current resulting from a specific diode voltage.

For example, a junction diode might be specified as:
" A junction diode with $n=1$ pulls $2 m A$ of current at a voltage $v_{D}=0.6 \mathrm{~V}$."

The above statement completely specifies the performance of this particular junction diode-we can now determine the current flowing through this diode for any other value of diode voltage v_{0}. Likewise, we can find the voltage across the diode for any other diode current value io.

For example, say we wish to find the current through the junction diode specified above when a potential difference of $v_{D}=0.7 \mathrm{~V}$ is placed across it. We have two options for finding this current:

Option 1:

We know that $n=1$ and that $i_{D}=2 \mathrm{~mA}$ when $v_{D}=0.6 \mathrm{~V}$. Thus, we can use this information to solve for scale current I_{s} :

$$
\begin{aligned}
I_{S} e^{\frac{V_{0}}{n_{T}}} & =i_{0} \\
I_{S} e^{\frac{0.625}{0.025}} & =2 \\
I_{s} & =2 e^{\frac{-0.6}{0.025}} \\
I_{S} & =7.55 \times 10^{-11} \mathrm{~mA}
\end{aligned}
$$

Now, we use the forward-biased junction diode equation to determine the current through this device at the new voltage of $v_{D}=0.7 \mathrm{~V}$:

$$
\begin{aligned}
i_{D} & =I_{S} e^{\frac{v_{D}}{n V_{T}}} \\
& =\left(7.55 \times 10^{-11}\right) e^{\frac{0.7}{0.025}} \\
& =109.2 \mathrm{~mA}
\end{aligned}
$$

Option 2

Here, we directly determine the current at $v_{D}=0.7$ using one of the expressions derived earlier in this handout! Using $i_{1}=2 \mathrm{~mA}$, $v_{1}=0.6$, and $v_{2}=0.7 \mathrm{~V}$ we can find current i_{2} as:

$$
\begin{aligned}
\frac{i_{2}}{i_{1}} & =\exp \left[\frac{\left(v_{2}-V_{1}\right)}{n V_{T}}\right] \\
i_{2} & =i_{1} \exp \left[\frac{\left(v_{2}-V_{1}\right)}{n V_{T}}\right] \\
& =2 \exp \left[\frac{(0.7-0.6)}{0.025}\right] \\
& =109.2 \mathrm{~mA}
\end{aligned}
$$

Option 2 (using the equations we derived in this handout) is obviously quicker and easier (note in option 2 we did not have to deal with annoying numbers like 7.55×10^{-11} !).

Finally, we should also note that junction diodes are often specified simply as "a 2 mA diode" or "a 10 mA diode" or "a 100 mA diode". These statement implicitly provide the diode current at the standard diode test voltage of $v_{D}=0.7 \mathrm{~V}$.

Q: But what about the value of junction diode idealty factor n?

A: If no value of n is provided (and there is not sufficient information given to determine it), we typically just assume that $n=1$.

For example, consider the following problem:
"Determine the voltage across a 100 mA junction diode when there is 2 mA of current flowing through it."

A "100 mA junction diode" simply means a junction diode that will have a current of 100 mA flowing through it ($i_{D}=100 \mathrm{~mA}$) if the voltage across it is $v_{D}=0.7 \mathrm{~V}$. We will assume that $n=1$, since no other information about that parameter was given.

Thus, using $v_{1}=0.7, i_{1}=100 \mathrm{~mA}$, and $i_{2}=2 \mathrm{~mA}$, we can determine the value of v_{2} :

